From: cheno@micronet.fr (Laurent Chéno )
To: caml-list@margaux.inria.fr
Subject: announce for Lettre de Caml 3
Date: Sun, 14 Apr 1996 17:32:32 +0200 [thread overview]
Message-ID: <v01530500ad96cade3153@[193.149.100.96]> (raw)
I am happy to announce the availability for the "Caml letter, number 3"
(written in French as << La lettre de Caml no 3>>), to be found at:
http://pauillac.inria.fr/caml/lettre_de_caml/index.html
Summary :
- Conjunctive and disjonctive normal forms.
- Rational arithmetic, with emphasis about the rational
approximations of pi.
- Inverse of a permutation (functional aspect).
- An algorithm by Johnson about permutations.
Any contribution to "The Caml letter" is welcome (cheno@micronet.fr)
You will also find at:
http://pauillac.inria.fr/caml/polycopies/cheno/index-eng.html
a course in computer theory, at upper undergraduate level (PostScript),
Caml being used to discuss and implement the algorithms.
Summary:
Part I:
Data structures; stacks, queues, circular lists,
priority queues, set partitions.
Part II: Graph algorithms.
Part III:
Computational geometry, convex hull
(Graham-Andrew, Shamos, Preparata-Hong),
nearest neighbor search problem,
Voronoi diagram (Tsai algorithm).
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
=-=-=-=-=-=-
J'ai le plaisir de vous annoncer la disponibilité du numéro 3 de la Lettre
de Caml
à l'URL:
http://pauillac.inria.fr/caml/lettre_de_caml/index.html
Au sommaire de ce numéro :
Formes normales conjonctives et disjonctives
Arithmétique exacte en Caml, approximations rationnelles de pi
Inverse d'une permutation
Algorithme de Johnson
Associativité des opérations arithmétiques
Toute contribution sera la bienvenue : cheno@micronet.fr
Vous trouverez aussi à l'URL:
http://pauillac.inria.fr/caml/polycopies/cheno/index-eng.html
un poly rédigé à l'attention des enseignants de l'option informatique en
classes préparatoires aux
grandes écoles.
Au sommaire :
Partie 1 : structures de données
piles ; files d'attente ; listes circulaires ; files de priorité ;
partitions
Partie 2 : algorithmes sur les graphes
Floyd ; Warshall ; Dijkstra ; Prim ; Kruskal
Partie 3 : géométrie combinatoire
enveloppe convexe (Graham-Andrew, Shamos, Preparata-Hong)
paire de points les plus proches
diagrammes de Voronoi (algorithme de Tsai)
-------------------------------------------------------------------
Laurent Chéno teaching at / enseignant au
Lycée Louis-le-Grand - 123 rue Saint-Jacques
75231 PARIS CEDEX 05 - FRANCE
-------------------------------------------------------------------
reply other threads:[~1996-04-15 7:39 UTC|newest]
Thread overview: [no followups] expand[flat|nested] mbox.gz Atom feed
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to='v01530500ad96cade3153@[193.149.100.96]' \
--to=cheno@micronet.fr \
--cc=caml-list@margaux.inria.fr \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox