* [Caml-list] Weird types @ 2001-06-15 23:36 Berke Durak 2001-06-16 17:37 ` Tyng-Ruey Chuang 0 siblings, 1 reply; 6+ messages in thread From: Berke Durak @ 2001-06-15 23:36 UTC (permalink / raw) To: caml I have a type type ('a,'b,'c,'d,'e,'f,'g) sigma = I of 'a * 'b * 'c * 'd * 'e * 'f * 'g | T of ('b,'a,'c,'d,'e,'f,'g) sigma | P of ('b,'c,'d,'e,'f,'g,'a) sigma and a function let rec gamma = function I _ -> 0 | T x -> 1 + (gamma x) | P x -> 1 + (gamma x) and want a version of gamma that works on the following data type t1 = X1 and t2 = X2 and t3 = X3 and t4 = X4 and t5 = X5 and t6 = X6 and t7 = X7 let data = I(X1,X2,X3,X4,X5,X6,X7) and that is under 10K of length. Any clever way to solve this ? I admit that this is an expressly constructed pathologic case. However it's derived from the much less pathologic following case : type min = Min of (int -> int -> int) type max = Max of (int -> int -> int) type ('a,'b,'c) game_tree = Leaf of 'c | Branch of 'a * 'c * ('b,'a,'c) game_tree list type ('a,'b,'c) game = Game of 'a * 'b * ('a,'b,'c) game_tree let min = Min(compare) let max = Max((fun x y -> - compare x y)) let bad_game = Game(min,max, Branch(max,None, [Branch(max,None,[Leaf(None)]); Branch(max,None,[Branch(min,None,[Leaf(None)])])]) let a_game = Game(min,max, Branch(max, ref None, [Branch(min, ref None, [Leaf(ref (Some 6.12389)); Leaf(ref (Some 3.49348))]); Branch(min, ref None, [Leaf(ref (Some 1.372645)); Branch(max, ref None, [Leaf(ref (Some 1.481743)); Leaf(ref (Some 2.481743)); Leaf(ref (Some 3.481743)); Leaf(ref (Some 4.481743))])])]) where the typing is used to ensure that each level in the game tree contains only nodes of the same type and that no two consecutive levels are of the same type. -- Berke Durak ------------------- Bug reports: http://caml.inria.fr/bin/caml-bugs FAQ: http://caml.inria.fr/FAQ/ To unsubscribe, mail caml-list-request@inria.fr Archives: http://caml.inria.fr ^ permalink raw reply [flat|nested] 6+ messages in thread
* Re: [Caml-list] Weird types 2001-06-15 23:36 [Caml-list] Weird types Berke Durak @ 2001-06-16 17:37 ` Tyng-Ruey Chuang 2001-06-18 7:14 ` Jean-Christophe Filliatre 0 siblings, 1 reply; 6+ messages in thread From: Tyng-Ruey Chuang @ 2001-06-16 17:37 UTC (permalink / raw) To: caml; +Cc: trc Berke Durak wrote: > > I have a type > > type ('a,'b,'c,'d,'e,'f,'g) sigma = > I of 'a * 'b * 'c * 'd * 'e * 'f * 'g > | T of ('b,'a,'c,'d,'e,'f,'g) sigma > | P of ('b,'c,'d,'e,'f,'g,'a) sigma > > and a function > > let rec gamma = function > I _ -> 0 | > T x -> 1 + (gamma x) | > P x -> 1 + (gamma x) > > and want a version of gamma that works on the following data > > type t1 = X1 and t2 = X2 and t3 = X3 and > t4 = X4 and t5 = X5 and t6 = X6 and t7 = X7 > > let data = I(X1,X2,X3,X4,X5,X6,X7) > > and that is under 10K of length. Any clever way to solve this ? .... I am not sure people at INRIA will recommend this, but one can use Obj.magic to coerce the compiler to accept unsafe value definitions. For example, let rec gamma s = match s with I _ -> 0 | T x -> 1 + Obj.magic gamma x | P x -> 1 + Obj.magic gamma x will be inferred as val gamma : ('a, 'b, 'c, 'd, 'e, 'f, 'g) sigma -> int = <fun> In this particular case, function gamma is safe to have the above type because, by its definition, values of types 'a, 'b, 'c, 'd, 'e, 'f, and 'g are always ignored. If we define let i = I (X1, X2, X3, X4, X5, X6, X7) let rec t n = if n <= 0 then i else T (t' (n-1)) and t' n = if n <= 0 then T i else T (t (n-1)) then (t (2*k)) will return a "length (2*k)" sigma value, and (t' (2*k+1)) will return a "length (2*k+1)" sigma value. Functions t and t' are nicely inferred by the compiler to have types val t : int -> (t1, t2, t3, t4, t5, t6, t7) sigma = <fun> val t' : int -> (t2, t1, t3, t4, t5, t6, t7) sigma = <fun> Troubles are, (t (2*k-1)) also has length (2*k). Also, (t' (2*k)) has length (2*k+1). This is no good, but one probably cannot do better. It can also be inferred that sigma values of the same length may not have the same type. (P (t (2*k))) and (t' (2*k+1)) both have length (2*k+1), but with different types: let t'10k1 = t' 10001 let t10k = t 10000 let pt10k = P t10k let (u, v) = (gamma pt10k, gamma t'10k1) We get val t'10k1 : (t2, t1, t3, t4, t5, t6, t7) sigma = ... val t10k : (t1, t2, t3, t4, t5, t6, t7) sigma = ... val pt10k : (t7, t1, t2, t3, t4, t5, t6) sigma = ... val u : int = 10001 val v : int = 10001 By the way, people call type constructors like sigma "irregular": sigma is applied to different type expresions at the two sides of the its own type equation. A self-contained code fragment is appended for your amusement. Have fun! Tyng-Ruey Chuang -------------------- type ('a, 'b, 'c, 'd, 'e, 'f, 'g) sigma = I of 'a * 'b * 'c * 'd *'e * 'f * 'g | T of ('b, 'a, 'c, 'd, 'e, 'f, 'g) sigma | P of ('b, 'c, 'd, 'e, 'f, 'g, 'a) sigma let rec gamma s = match s with I _ -> 0 | T x -> 1 + Obj.magic gamma x | P x -> 1 + Obj.magic gamma x type t1 = X1 and t2 = X2 and t3 = X3 and t4 = X4 and t5 = X5 and t6 = X6 and t7 = X7 let i = I (X1, X2, X3, X4, X5, X6, X7) let rec t n = if n <= 0 then i else T (t' (n-1)) and t' n = if n <= 0 then T i else T (t (n-1)) let t'10k1 = t' 10001 let t10k = t 10000 let pt10k = P t10k let (u, v) = (gamma pt10k, gamma t'10k1) ------------------- Bug reports: http://caml.inria.fr/bin/caml-bugs FAQ: http://caml.inria.fr/FAQ/ To unsubscribe, mail caml-list-request@inria.fr Archives: http://caml.inria.fr ^ permalink raw reply [flat|nested] 6+ messages in thread
* Re: [Caml-list] Weird types 2001-06-16 17:37 ` Tyng-Ruey Chuang @ 2001-06-18 7:14 ` Jean-Christophe Filliatre 2001-06-18 8:04 ` Tyng-Ruey Chuang 0 siblings, 1 reply; 6+ messages in thread From: Jean-Christophe Filliatre @ 2001-06-18 7:14 UTC (permalink / raw) To: Tyng-Ruey Chuang; +Cc: caml Actually, there is a type-able way of writing this function, which consists in duplicating it into two functions, like this: ====================================================================== type ('a,'b,'c) t = | A of 'a * 'b * 'c | B of ('b, 'a, 'c) t let rec gamma = function | A _ -> 0 | B x -> 1 + gamma' x and gamma' = function | A _ -> 0 | B x -> 1 + gamma x ====================================================================== which gives the expected types: ====================================================================== val gamma : ('a, 'b, 'c) t -> int = <fun> val gamma' : ('a, 'b, 'c) t -> int = <fun> ====================================================================== In gamma, argument is of type ('a,'b,'c) t and gamma' is called on x of type ('b,'a,'c) t; and gamma' is calling gamma similarly. Of course, it duplicated code, which is bad practice, but avoids Obj.magic, which is also bad practice :-) Similar (although different) typing issues are discussed in a nice paper by Chris Okasaki (which can be accessed at http://www.cs.columbia.edu/~cdo/papers.html#icfp99) but are solved using rank-2 polymorphism. Hope this helps, -- Jean-Christophe FILLIATRE mailto:Jean-Christophe.Filliatre@lri.fr http://www.lri.fr/~filliatr Tyng-Ruey Chuang writes: > Berke Durak wrote: > > > > I have a type > > > > type ('a,'b,'c,'d,'e,'f,'g) sigma = > > I of 'a * 'b * 'c * 'd * 'e * 'f * 'g > > | T of ('b,'a,'c,'d,'e,'f,'g) sigma > > | P of ('b,'c,'d,'e,'f,'g,'a) sigma > > > > and a function > > > > let rec gamma = function > > I _ -> 0 | > > T x -> 1 + (gamma x) | > > P x -> 1 + (gamma x) > > > > and want a version of gamma that works on the following data > > > > type t1 = X1 and t2 = X2 and t3 = X3 and > > t4 = X4 and t5 = X5 and t6 = X6 and t7 = X7 > > > > let data = I(X1,X2,X3,X4,X5,X6,X7) > > > > and that is under 10K of length. Any clever way to solve this ? .... > > > I am not sure people at INRIA will recommend this, but one can > use Obj.magic to coerce the compiler to accept unsafe value definitions. > For example, > > let rec gamma s = > match s with > I _ -> 0 > | T x -> 1 + Obj.magic gamma x > | P x -> 1 + Obj.magic gamma x > > will be inferred as > > val gamma : ('a, 'b, 'c, 'd, 'e, 'f, 'g) sigma -> int = <fun> > > In this particular case, function gamma is safe to have the above type > because, by its definition, values of types 'a, 'b, 'c, 'd, 'e, 'f, and > 'g > are always ignored. > > If we define > > let i = I (X1, X2, X3, X4, X5, X6, X7) > let rec t n = if n <= 0 then i else T (t' (n-1)) > and t' n = if n <= 0 then T i else T (t (n-1)) > > then (t (2*k)) will return a "length (2*k)" sigma value, and > (t' (2*k+1)) will return a "length (2*k+1)" sigma value. Functions t > and t' are nicely inferred by the compiler to have types > > val t : int -> (t1, t2, t3, t4, t5, t6, t7) sigma = <fun> > val t' : int -> (t2, t1, t3, t4, t5, t6, t7) sigma = <fun> > > Troubles are, (t (2*k-1)) also has length (2*k). > Also, (t' (2*k)) has length (2*k+1). This is no good, > but one probably cannot do better. > > It can also be inferred that sigma values of the same length may > not have the same type. (P (t (2*k))) and (t' (2*k+1)) both have > length (2*k+1), but with different types: > > let t'10k1 = t' 10001 > let t10k = t 10000 > let pt10k = P t10k > > let (u, v) = (gamma pt10k, gamma t'10k1) > > We get > > val t'10k1 : (t2, t1, t3, t4, t5, t6, t7) sigma = ... > val t10k : (t1, t2, t3, t4, t5, t6, t7) sigma = ... > val pt10k : (t7, t1, t2, t3, t4, t5, t6) sigma = ... > val u : int = 10001 > val v : int = 10001 > > > By the way, people call type constructors like sigma "irregular": > sigma is applied to different type expresions at the two sides > of the its own type equation. > > A self-contained code fragment is appended for your amusement. > Have fun! > > Tyng-Ruey Chuang > > -------------------- > > type ('a, 'b, 'c, 'd, 'e, 'f, 'g) sigma = > I of 'a * 'b * 'c * 'd *'e * 'f * 'g > | T of ('b, 'a, 'c, 'd, 'e, 'f, 'g) sigma > | P of ('b, 'c, 'd, 'e, 'f, 'g, 'a) sigma > > let rec gamma s = > match s with > I _ -> 0 > | T x -> 1 + Obj.magic gamma x > | P x -> 1 + Obj.magic gamma x > > type t1 = X1 > and t2 = X2 > and t3 = X3 > and t4 = X4 > and t5 = X5 > and t6 = X6 > and t7 = X7 > > let i = I (X1, X2, X3, X4, X5, X6, X7) > let rec t n = if n <= 0 then i else T (t' (n-1)) > and t' n = if n <= 0 then T i else T (t (n-1)) > > let t'10k1 = t' 10001 > let t10k = t 10000 > let pt10k = P t10k > > let (u, v) = (gamma pt10k, gamma t'10k1) > ------------------- > Bug reports: http://caml.inria.fr/bin/caml-bugs FAQ: http://caml.inria.fr/FAQ/ > To unsubscribe, mail caml-list-request@inria.fr Archives: http://caml.inria.fr ------------------- Bug reports: http://caml.inria.fr/bin/caml-bugs FAQ: http://caml.inria.fr/FAQ/ To unsubscribe, mail caml-list-request@inria.fr Archives: http://caml.inria.fr ^ permalink raw reply [flat|nested] 6+ messages in thread
* Re: [Caml-list] Weird types 2001-06-18 7:14 ` Jean-Christophe Filliatre @ 2001-06-18 8:04 ` Tyng-Ruey Chuang 2001-06-18 12:15 ` Didier Remy 0 siblings, 1 reply; 6+ messages in thread From: Tyng-Ruey Chuang @ 2001-06-18 8:04 UTC (permalink / raw) To: caml-list; +Cc: Tyng-Ruey Chuang, Jean-Christophe Filliatre Jean-Christophe FILLIATRE wrote: > Actually, there is a type-able way of writing this function, which > consists in duplicating it into two functions, like this: > > ====================================================================== > type ('a,'b,'c) t = > | A of 'a * 'b * 'c > | B of ('b, 'a, 'c) t > > let rec gamma = function > | A _ -> 0 > | B x -> 1 + gamma' x > > and gamma' = function > | A _ -> 0 > | B x -> 1 + gamma x > ====================================================================== > > which gives the expected types: > > ====================================================================== > val gamma : ('a, 'b, 'c) t -> int = <fun> > val gamma' : ('a, 'b, 'c) t -> int = <fun> > ====================================================================== Interesting! But then size of the duplicated code grows exponentially. For example, for a 3-ary type constructor sigma type ('a, 'b, 'c) sigma = I of 'a * 'b * 'c | T of ('b, 'a, 'c) sigma | P of ('b, 'c, 'a) sigma one need to define the 6 equivalent "length" functions gamma_xxx, where xxx ranges from {abc, acb, bac, bca, cab, cba}, by let rec gamma_abc s = match s with I _ -> 0 | T x -> 1 + gamma_bac x | P x -> 1 + gamma_bca x and gamma_acb s = match s with I _ -> 0 | T x -> 1 + gamma_cab x | P x -> 1 + gamma_cba x and gamma_bac s = match s with I _ -> 0 | T x -> 1 + gamma_abc x | P x -> 1 + gamma_acb x and gamma_bca s = match s with I _ -> 0 | T x -> 1 + gamma_cba x | P x -> 1 + gamma_cab x and gamma_cab s = match s with I _ -> 0 | T x -> 1 + gamma_acb x | P x -> 1 + gamma_abc x and gamma_cba s = match s with I _ -> 0 | T x -> 1 + gamma_bca x | P x -> 1 + gamma_bac x For the original definition of 7-ary sigma type ('a,'b,'c,'d,'e,'f,'g) sigma = I of 'a * 'b * 'c * 'd * 'e * 'f * 'g | T of ('b,'a,'c,'d,'e,'f,'g) sigma | P of ('b,'c,'d,'e,'f,'g,'a) sigma one probably will need 7! = 5040 equivalent "length" functions that are recursively defined among themselves! I guess language-supported polymorphic recursions will help here. However, I believe the general problem of typing polymorphic recursive functions had been shown to be undecidable. Tyng-Ruey Chuang ------------------- Bug reports: http://caml.inria.fr/bin/caml-bugs FAQ: http://caml.inria.fr/FAQ/ To unsubscribe, mail caml-list-request@inria.fr Archives: http://caml.inria.fr ^ permalink raw reply [flat|nested] 6+ messages in thread
* Re: [Caml-list] Weird types 2001-06-18 8:04 ` Tyng-Ruey Chuang @ 2001-06-18 12:15 ` Didier Remy 0 siblings, 0 replies; 6+ messages in thread From: Didier Remy @ 2001-06-18 12:15 UTC (permalink / raw) To: Tyng-Ruey Chuang; +Cc: caml-list, Jean-Christophe Filliatre Tyng-Ruey Chuang <trc@iis.sinica.edu.tw> writes: > Jean-Christophe FILLIATRE wrote: > > Actually, there is a type-able way of writing this function, which > > consists in duplicating it into two functions, like this: > > > > ====================================================================== > > type ('a,'b,'c) t = > > | A of 'a * 'b * 'c > > | B of ('b, 'a, 'c) t > > > > let rec gamma = function > > | A _ -> 0 > > | B x -> 1 + gamma' x > > > > and gamma' = function > > | A _ -> 0 > > | B x -> 1 + gamma x > > ====================================================================== > > > > which gives the expected types: > > > > ====================================================================== > > val gamma : ('a, 'b, 'c) t -> int = <fun> > > val gamma' : ('a, 'b, 'c) t -> int = <fun> > > ====================================================================== > > Interesting! But then size of the duplicated code grows exponentially. Actually, you can share a little more: let gamma_body gamma = function | A _ -> 0 | B x -> 1 + gamma x let rec gamma x = gamma_body gamma' x and gamma' x = gamma_body gamma x;; ;; and a for three parameters: type ('a, 'b, 'c) sigma = | I of 'a * 'b * 'c | T of ('b, 'a, 'c) sigma | P of ('b, 'c, 'a) sigma let body gT gP = function | I _ -> 0 | T x -> 1 + gT x | P x -> 1 + gP x let rec abc s = body bac bca s and acb s = body cab cba s and bac s = body abc acb s and bca s = body cba cab s and cab s = body acb abc s and cba s = body bca bac s ;; Didier ------------------- Bug reports: http://caml.inria.fr/bin/caml-bugs FAQ: http://caml.inria.fr/FAQ/ To unsubscribe, mail caml-list-request@inria.fr Archives: http://caml.inria.fr ^ permalink raw reply [flat|nested] 6+ messages in thread
* [Caml-list] Weird types @ 2001-06-15 19:35 Berke Durak 0 siblings, 0 replies; 6+ messages in thread From: Berke Durak @ 2001-06-15 19:35 UTC (permalink / raw) To: caml I have a type type ('a,'b,'c,'d,'e,'f,'g) sigma = I of 'a * 'b * 'c * 'd * 'e * 'f * 'g | T of ('b,'a,'c,'d,'e,'f,'g) sigma | P of ('b,'c,'d,'e,'f,'g,'a) sigma and a function let rec gamma = function I _ -> 0 | T x -> 1 + (gamma x) | P x -> 1 + (gamma x) and want a version of gamma that works on the following data type t1 = X1 and t2 = X2 and t3 = X3 and t4 = X4 and t5 = X5 and t6 = X6 and t7 = X7 let data = I(X1,X2,X3,X4,X5,X6,X7) and that is under 10K of length. Any clever way to solve this ? I admit that this is an expressly constructed pathologic case. However it's derived from the much less pathologic following : type min = Min of (int -> int -> int) type max = Max of (int -> int -> int) type ('a,'b,'c) game_tree = type Leaf of 'c | Branch of 'a * 'c * ('b,'a,'c) game_tree list type ('a,'b,'c) game = Game of 'a * 'b * ('a,'b,'c) game let min = Min(compare) let max = Max((fun x y -> - compare x y)) let bad_game = Game(min,max, Branch(max,None,[Branch(max,None,[Leaf(None)]); Branch(max,None,[Branch(min,None,[Leaf(None)])])])) let a_game = Game(min,max, Branch(max, ref None, [Branch(min, ref None, [Leaf(ref (Some 6.12389)); Leaf(ref (Some 3.49348))]); Branch(min, ref None, [Leaf(ref (Some 1.372645)); Branch(max, ref None, [Leaf(ref (Some 1.481743)); Leaf(ref (Some 2.481743)); Leaf(ref (Some 3.481743)); Leaf(ref (Some 4.481743))])])]) where the typing is used to ensure that each level in the game tree contains only nodes of the same type and that no two consecutive levels are of the same type. -- Berke Durak ------------------- Bug reports: http://caml.inria.fr/bin/caml-bugs FAQ: http://caml.inria.fr/FAQ/ To unsubscribe, mail caml-list-request@inria.fr Archives: http://caml.inria.fr ^ permalink raw reply [flat|nested] 6+ messages in thread
end of thread, other threads:[~2001-06-19 7:12 UTC | newest] Thread overview: 6+ messages (download: mbox.gz / follow: Atom feed) -- links below jump to the message on this page -- 2001-06-15 23:36 [Caml-list] Weird types Berke Durak 2001-06-16 17:37 ` Tyng-Ruey Chuang 2001-06-18 7:14 ` Jean-Christophe Filliatre 2001-06-18 8:04 ` Tyng-Ruey Chuang 2001-06-18 12:15 ` Didier Remy -- strict thread matches above, loose matches on Subject: below -- 2001-06-15 19:35 Berke Durak
This is a public inbox, see mirroring instructions for how to clone and mirror all data and code used for this inbox