From: Alain Frisch <alain.frisch@lexifi.com>
To: Jacques Garrigue <garrigue@math.nagoya-u.ac.jp>
Cc: caml-list <caml-list@yquem.inria.fr>
Subject: Re: [Caml-list] What is an applicative functor?
Date: Fri, 08 Apr 2011 10:44:34 +0200 [thread overview]
Message-ID: <4D9ECAF2.7070300@lexifi.com> (raw)
In-Reply-To: <F8F08069-5BEC-4E15-B359-FE70CF1105A6@math.nagoya-u.ac.jp>
On 04/08/2011 10:20 AM, Jacques Garrigue wrote:
> Applicative functors have other advantages, like the fact you can refer to a
> type produced by a functor without having really applied it.
>
> For instance think of the following functor definition
>
> module F(O : Set.OrderedType)(S : sig type t = Set.Make(O).t val union : t -> t -> t end) = ...
>
> If you want to do the same thing with generative functors, I believe you have to
> pass the result of Set.Make(O) around physically.
> I do think this is a significant weakness.
I can imagine uses for:
module F(O : Set.OrderedType)(S : Set.S with type elt = O.t) =
but I don't see a real-life case where one would want functor F to know
that the type S.t was really produced by applying Set.Make. Do you have
a specific example in mind?
Alain
next prev parent reply other threads:[~2011-04-08 8:44 UTC|newest]
Thread overview: 27+ messages / expand[flat|nested] mbox.gz Atom feed top
2011-04-07 21:12 Dawid Toton
2011-04-07 21:49 ` Gerd Stolpmann
2011-04-08 0:44 ` [Caml-list] " Dawid Toton
2011-04-08 1:34 ` Gerd Stolpmann
2011-04-08 6:50 ` [Caml-list] " Andreas Rossberg
2011-04-08 8:04 ` Alain Frisch
2011-04-08 8:20 ` Jacques Garrigue
2011-04-08 8:38 ` Jacques Garrigue
2011-04-08 8:44 ` Alain Frisch [this message]
2011-04-08 10:09 ` Jacques Garrigue
2011-04-08 11:25 ` Julien Signoles
2011-04-08 11:58 ` Alain Frisch
2011-04-11 7:10 ` Julien Signoles
2011-04-11 7:21 ` Julien Signoles
2011-04-08 13:43 ` rossberg
2011-04-08 16:26 ` Julien Signoles
2011-04-13 2:36 ` Lucas Dixon
2011-04-13 7:23 ` Andreas Rossberg
2011-04-15 3:08 ` Lucas Dixon
2011-04-19 14:04 ` Andreas Rossberg
2011-04-08 16:43 ` Till Varoquaux
2011-04-08 17:35 ` Alain Frisch
2011-04-08 18:44 ` Andreas Rossberg
2011-04-08 21:23 ` Lauri Alanko
2011-04-08 21:34 ` Guillaume Yziquel
2011-04-09 11:41 ` Andreas Rossberg
2011-04-08 5:35 ` Stefan Holdermans
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=4D9ECAF2.7070300@lexifi.com \
--to=alain.frisch@lexifi.com \
--cc=caml-list@yquem.inria.fr \
--cc=garrigue@math.nagoya-u.ac.jp \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox